استفاده از رهیافت های شبکه های عصبی مصنوعی و سری زمانی در پیش بینی میزان مصرف انرژی الکتریکی در بخش کشاورزی

Authors

مهرزاد ابراهیمی

abstract

هدف اصلی این مطالعه پیش بینی میزان مصرف انرژی الکتریکی در بخش کشاورزی است. برای این منظور از روش های سری زمانی خود توضیح جمعی میانگین متحرک(arima) و شبکه ی عصبی مصنوعی استفاده شد. به منظور انجام بررسی، از داده های سالانه ی دوره ی 1346 تا 1383 برای برآورد و آموزش مدل ها و از داده های دوره ی 1384 تا 1387 به منظور بررسی قدرت پیش بینی مدل های مختلف استفاده شد. در این مطالعه معیارهای ارزیابی مختلفی شامل میانگین قدرمطلق خطا(mae)، میانگین مجذور خطا(mse) و درصد میانگین مطلق خطا(mape) مورد استفاده قرار گرفتند. نتایج مطالعه نشان داد که شبکه ی عصبی پرسپترون سه لایه با روش آموزش الگوریتم پس انتشار دارای mape معادل 02/1 درصد می باشد که کمتر از مقدار این آماره برای مدل سری زمانی است(13/1 درصد). سایر معیارهای خطا نیز نتایج یکسانی دارند و بر این اساس شبکه ی عصبی قادر است میزان مصرف برق در بخش کشاورزی را بهتر از مدل arima پیش بینی نماید. لذا پیشنهاد می شود وزرات نیرو جهت پیش بینی های آتی خود از این روش استفاده نماید.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

استفاده از رهیافت‌های شبکه‌های عصبی مصنوعی و سری زمانی در پیش‌بینی میزان مصرف انرژی الکتریکی در بخش کشاورزی

هدف اصلی این مطالعه پیش بینی میزان مصرف انرژی الکتریکی در بخش‌کشاورزی است. برای این منظور از روش‌های سری زمانی خود توضیح جمعی میانگین متحرک(ARIMA) و شبکه ی عصبی مصنوعی استفاده شد. به منظور انجام بررسی، از داده‌های سالانه ی دوره ی 1346 تا 1383 برای برآورد و آموزش مدل‌ها و از داده‌های دوره ی 1384 تا 1387 به منظور بررسی قدرت پیش‌بینی مدل‌های مختلف استفاده شد. در این مطالعه معیارهای ارزیابی مختلفی ...

full text

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

full text

پیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی

هدف از این مقاله ارزیابی الگوی ترکیبی شبکه­های عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران می­باشد. برای این منظور، از داده­های سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدل­های پیش­بینی و از داده­های سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدل­های پیش­بینی استفاده شد. در پایان به منظور مقایسه نتایج پیش­بینی مدل ترکیبی...

full text

مقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران

     با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به  مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی  زمانی1371:1 تا 1385:11 بوده و  از شر...

full text

My Resources

Save resource for easier access later


Journal title:
فصلنامه علمی -پژوهشی تحقیقات اقتصاد کشاورزی

Publisher: دانشگاه آزاد اسلامی واحد مرودشت

ISSN 2008-6407

volume 4

issue 13 2012

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023